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Transfer of nonclassical features in quantum teleportation via a mixed quantum channel
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Quantum teleportation of a continuous-variable state is studied for the quantum channel of a two-mode
squeezed vacuum influenced by a thermal environment. Each mode of the squeezed vacuum is assumed to
undergo the same thermal influence. It is found that when the mixed two-mode squeezed vacuum for the
quantum channel is separable, any nonclassical features, which may be imposed in an original unknown state,
cannot be transferred to a receiving station. A two-mode Gaussian state, one of which is a mixed two-mode
squeezed vacuum, is separable if and only if a positive well-definedP function can be assigned to it. The
fidelity of teleportation is considered in terms of the noise factor given by the imperfect channel. It is found
that quantum teleportation may give more noise than direct transmission of a field under the thermal environ-
ment, which is due to the fragile nature of quantum entanglement of the quantum channel.

PACS number~s!: 03.67.Hk, 42.50.Dv, 03.65.Bz
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I. INTRODUCTION

Quantum teleportation is one of the important manifes
tions of quantum mechanics. By quantum teleportation
unknown quantum state is destroyed at a sending sta
while its replica state appears at a remote receiving sta
via dual quantum and classical channels. The key to quan
teleportation is the entanglement of the quantum chan
Quantum teleportation has been studied for various syst
including two-level systems@1#, N-dimensional systems@2#,
and continuous variables@3–5#. In particular, quantum tele
portation of continuous variable states has been a focus
cause of a high detection efficiency and handy manipula
of continuous-variable states@4,6#.

Quantum teleportation of a continuous-variable state w
first suggested by Vaidman employing the Einste
Podolsky-Rosen~EPR! state@7# for the quantum channel in
the framework of nonlocal measurements@3#. Braunstein and
Kimble made use of quadrature-phase entanglement
two-mode squeezed vacuum to teleport the quadrature-p
variables. With the high detection efficiency of the hom
dyne measurement and highly squeezed light, Ralph
Lam @5# and Furusawaet al. @6# realized quantum teleporta
tion of continuous-variable states by experiments. Ralph
Lam produced the required entangled state using two br
squeezed sources. A two-mode squeezed vacuum is
tangled with respect not only to quadrature phases but als
photon-number difference and phase sum. Based on
number-phase entanglement, Milburn and Braunstein s
gested another protocol to teleport a continuous-varia
state@8#.

There are a few problems in the quantum teleportation
quadrature-phase variables using the two-mode sque
vacuum. The perfect quantum teleportation is possible o
with a maximally entangled state which means infin
squeezing in the squeezed state. The mean energy of a
mode squeezed state increases exponentially as the sq
ing increases so that the maximally entangled squeezed
is unphysical. As the quantum channel is exposed to the
world, it is influenced by the environment, which turns t
1050-2947/2000/62~3!/032305~8!/$15.00 62 0323
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pure squeezed state into amixture and deteriorates the en
tanglement property. The environmental effect is unavo
able for any type of teleportation and there have been s
gestions to purify a mixed entangled state into a maxima
entangled singlet state for a discrete two-level system@9#.
Duanet al.suggested a way to purify a Gaussian continuo
variable state@10#. However, their purification protocol ma
concentrate entanglement only to a finite dimensional Hilb
space. In fact, it is impossible to purify a two-mode squee
state into a maximally entangled state as it is unphysi
Opartny et al. showed that the problem of not having th
maximally entangled squeezed vacuum can be overcom
conditional measurements@11#. Entanglement quantification
and purification for continuous-variable states have b
studied by Parkeret al. @12#. The imperfect detection effi-
ciency and the imperfect realization of unitary transform
tion at the receiving station can also lower the efficiency
teleportation.

In this paper, we are interested in the efficiency of qua
tum teleportation in the real world. Nonclassical propert
such as sub-Poissonicity and squeezing of the original s
can be very useful for communication purposes. As
quantum channel is not maximally entangled, some or al
the nonclassical properties can be lost during the telepo
tion. Braunstein and Kimble found that when the quantu
channel is not squeezed, i.e., when the channel is mere
two-mode vacuum, no quantum features can be observe
the teleported state@4#. This is due to quantum tariffs o
vacuum noise, which arises at the sending and receiving
tions. The tariff was coinedquduty by Braunstein and
Kimble. The pure two-mode squeezed state becomes m
as the quantum channel is embedded in the environm
Quantum teleportation via the mixed channel can bear a
ferent nature. For example, one may ask ‘‘Does the class
correlation play any role to transfer the nonclassical f
tures?’’ It is not clear so far under which condition any no
classical features implicit in an original unknown state ca
not be transferred by teleportation via a mixed channel.
also consider the fidelity of teleportation to measure h
close the teleported state is to the original state when
©2000 The American Physical Society05-1
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JINHYOUNG LEE, M. S. KIM, AND HYUNSEOK JEONG PHYSICAL REVIEW A62 032305
quantum channel is mixed. Popescu studied quantum
portation of a discrete two-level system for a mixed quant
channel and found that even when the quantum chann
not maximally entangled, it has better fidelity than any cl
sical teleportation protocol@13#. In this paper, we restric
ourselves to the situation in which the decoherence effec
the same on each mode of the two-mode squeezed vac

The continuous-variable state can be easily analyzed
ing the quasiprobability functions@14#. The description of a
quantum-mechanical state in phase space is not unique
to the uncertainty principle; hence there is a family of qu
siprobability functions of which theP, Q, and Wigner func-
tions are widely used@15#. In particular, it is well-known that
the P function can be used as a measure of the nonclass
ity of a given field@16#. A quantum state which shows non
classical features is not represented by a well-definedP func-
tion except a vacuum state. The nonclassical depth is defi
based on how much noise to put into the nonclassical sta
have a positive well-definedP function.

When teleportation is imperfect, a noise-added rep
state is produced at the receiving station. By analyzing
added noise, we find the critical point for the quantum ch
nel not to transfer any nonclassical features which may
imposed in an original unknown state. We examine the
incidence of the critical point with the moment when t
quantum channel becomes separable. To do that, we find
necessary and sufficient condition of separability for a
two-mode Gaussian state@17#, one of which is the mixed
two-mode squeezed state. The fidelity, which is defined
the inner product of the original and teleported states, can
represented by the overlap of their Wigner functions@18#.
We show that the fidelity is a function of the added noise

The added noise by teleportation is compared with tha
direct transmission of the original state. It is found that t
nonclassical nature of the original state can be more ea
lost by teleportation than by direct transmission. This is
cause teleportation relies on the entanglement of the q
tum channel, which is very fragile.

II. QUASIPROBABILITY FUNCTIONS

Before considering quantum teleportation, we briefly
troduce the quasiprobability functions. The family of qu
siprobability functions is obtained by the following convol
tion relation:

Rs~a!5E d2bF 2

p~12s!
expS 2

2ua2bu2

12s D GP~b!, ~1!

where thes-parametrizedRs(a) function becomes theQ
function fors521, the Wigner~W! function fors50, and
the P function for s51. By the Fourier transform, we find
the relation between their characteristic functions

Cs
R~j!5expF2

~12s!uju2

2 GCP~j!, ~2!
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whereCs
R(j) andCs

P(j) are the characteristic functions fo
theR andP functions, respectively. The family of two-mod
quasiprobability functions can be analogously defined as

Rs~a,b!5
4

p2~12s!2E d2f d2h

3expS 2
2ua2fu2

12s
2

2ub2hu2

12s D P~f,h!.

~3!

III. TELEPORTATION FOR CONTINUOUS VARIABLES
IN THERMAL ENVIRONMENTS

A continuous-variable stater̂o can be teleported with us
of a two-mode squeezed vacuum for a quantum channel@4#.
Two modesb andc of the squeezed vacuum are distribut
separately to sending and receiving stations. The proto
comprises two operations at the sending station and one
eration at the receiving station. At the sending station,
original unknown state of modea is mixed with a modeb of
the quantum channel by a 50/50 beam splitter. Two con
gate quadrature variables are measured, respectively, fo
two output fields of the beam splitter. The measurement
sults are sent to the receiving station through the class
channel. The other modec of the squeezed vacuum is the
displaced at the receiving station according to the meas
ment results. It is important to displace the photon of modc
entangled with the photon measured at the sending sta
Braunstein and Kimble considered the teleportation proto
for the pure state of the quantum channel@4#. In this paper
we investigate the teleportation via the mixed quantum ch
nel to consider the influence of a thermal environment. W
assume that the thermal environment gives the same e
on each mode of the quantum channel and the original s
is prepared in a pure state.

The two-mode squeezed vacuum of the quantum cha
is entangled and represented by the Wigner function@19#

Wqc~ab ,ac!5
4

p2
exp@22~ uabu21uacu2!cosh 2sqc

12~abac1ab* ac* !sinh 2sqc#, ~4!

where sqc is the degree of squeezing and the comp
quadrature phase variableab,c5ab,c

r 1 iab,c
i . Whensqc→`,

the state~4! manifests the maximum entanglement and b
comes an EPR state. However, the mean photon num
which is 2 sinh2 ssq, becomes infinity in this limit.

Before the action of the beam splitter, the total state i
product of the original state and the state of the quant
channel, which is represented by the total Wigner funct
Wt(aa ,ab ,ac)5Wo(aa)Wqc(ab ,ac), whereWo(aa) is the
Wigner function of the original stater̂o . The product state of
the original field and quantum channel becomes entangle
the beam splitter. Considering the unitary action of the be
splitter, the quadrature variablesad,e of the output fields are
5-2
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TRANSFER OF NONCLASSICAL FEATURES IN . . . PHYSICAL REVIEW A62 032305
related to those of the input fields:ad,e5(ab6aa)/A2. The
Wigner functionWt

B(ad ,ae ,ac) for the total field after the
beam splitter is

Wt
B~ad ,ae ,ac!5WtS ae1ad

A2
,
ae2ad

A2
,acD , ~5!

which exhibits entanglement between the modesa andb.
Setting homodyne detectors at the output ports of

beam splitter, the imaginary part ofad and the real part ofae
are simultaneously measured by appropriately choosing
phases of reference fields for the homodyne detectors. E
measurement result is transmitted to the receiving statio
displace the quadrature variables of the field modec. We
have to make sure that the displacement operation is don
the photon of modec entangled with the photon measured
the sending station. After the displacementD(ad

i ,ae
r ), the

field of modec comes to be represented by the Wigner fun
tion Wr(ac),

Wr~ac!5E d2add2aeWt
B
„ad ,ae ,ac2D~ad

i ,ae
r !…. ~6!

Braunstein and Kimble@4# found that the displacement o
D(ad

i ,ae
r )52A2(ae

r 2 iad
i ) maximizes the fidelity when the

channel is a pure two-mode squeezed state. The probab
P(ad

i ,ae
r ) of measuringad

i andae
r at the sending station i

the same as the marginal Wigner function

P~ad
i ,ae

r !5E dad
r dae

i d2acWt
B~ad ,ae ,ac!. ~7!

A. Two-mode squeezed vacuum in thermal environments

The quantum channel initially in the two-mode squeez
vacuum results in a mixed state by the interaction with
thermal environment. Assuming that two thermal modes
independently coupled with the quantum channel, the
namics of the squeezed field is described by a Fokker-Pla
equation in the interaction picture,

]Wqc~ab ,ac ;t !

]t
5

g

2 (
i 5b,c

F ]

]a i
a i1

]

]a i*
a i*

1~112n̄!
]2

]a i]a i*
GWqc~ab ,ac ;t !,

~8!

wheren̄ is the average photon number of the thermal en
ronment. The two thermal modes are assumed to have
same average energy and coupled with the channel in
same strength. This assumption is reasonable as the
modes of the squeezed state are in the same frequency
the temperature of the environment is normally the same.
solving the Fokker-Planck equation~8!, the time-dependen
Wigner function is obtained as
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Wqc~ab ,ac ;T!5N expF2
2G

G22L2
~ uabu21uacu2!

1
2L

G22L2
~abac1ab* ac* !G , ~9!

whereN is the normalization factor and the two paramete
G5T(112n̄)1(12T)cosh 2sqc, L5(12T)sinh 2sqc. The
time evolution of nonlocality for a two-mode squeezed st
in a thermal environment is discussed in@20#. The renormal-
ized timeT(t)512exp(2gt). The relative strength ofL to
G determines how much the mixed channel is entang
WhenL is zero forT→1, the channel loses any correlatio
so to have neither classical nor quantum correlation. AT
50, the mixed squeezed state~9! is simply the squeezed
vacuum~4!.

When the quantum channel is embedded in thermal e
ronments, the teleported state is still represented by
Wigner function~6! with the quantum channel~9!. However,
a question remains in the unitary operation at the receiv
station when the channel is a mixed state. According to
philosophy of the faithful teleportation, the displacement h
to be determined to maximize the fidelity of teleportatio
The fidelityF, which measures how close the teleported st
is to the original state, is the projection of the original pu
stateuCo& onto the teleported state of the density opera
r̂ r : F5^Cour̂ r uCo&. The fidelity is also represented by th
overlap between the Wigner functions for the original a
teleported states@18#,

F5pE d2a Wo~a!Wr~a!. ~10!

For a maximally entangled quantum channel, the origi
pure state is reproduced at the receiving station and th
delity is unity. For an impure or partially entangled chann
the unitary operation at the receiving station may depend
original states to maximize the fidelity, which has be
shown for the teleportation of a two-level state@13,21#. For
the infinite dimensional Hilbert space, a formal study is ve
complicated. However, we have found that even when
channel is mixed, the displacement ofD(ad

i ,ae
r )52A2(ae

r

2 iad
i ) maximizes the fidelity for a coherent projecto

um&^n* u, where um& and un* & are coherent-state bases. A
unknown state can be written as a weighted integral of
coherent projection operators

r̂o5E d2m d2nPo~m,n!um&^n* u, ~11!

where P(m,n) is proportional to the positive-P function
@22#. The unitary operation, which maximizes the fidelity
the receiving station, is thus independent of the original st

B. Separability of the quantum channel

A discrete bipartite system of modesb andc is separable
when its density operator is represented byr̂5( r Pr r̂b,r
5-3
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JINHYOUNG LEE, M. S. KIM, AND HYUNSEOK JEONG PHYSICAL REVIEW A62 032305
^r̂c,r . Separability and measures of entanglement for c
tinuous variable states have been studied@12,17#. In particu-
lar, Duanet al. found a criterion to determine separability
a two-mode Gaussian state. Here, we have a somewha
ferent approach to finding when a two-mode squee
vacuum in thermal environments is separable and not qu
tum mechanically entangled. Our analysis of separability
the mixed squeezed vacuum is extended and fully descr
for any two-mode Gaussian state in the Appendix.

As shown in the Appendix, the mixed two-mode squeez
vacuum in the thermal environment is separable when a p
tive definite P function can be assigned to it. The mixe
two-mode squeezed vacuum serving the quantum cha
can then be written by a statistical mixture of the dire
product states,

r̂qc5E d2bP~b!r̂b~b! ^ r̂c~b!, ~12!

whereP(b) is a probability density function.
With use of Eqs.~3! and~9!, we find that the mixed two-

mode squeezed vacuum is separable whennt51, wherent
is defined as

nt~ n̄,sqc,T![G2L5~2n̄11!T1~12T!exp~22sqc!
~13!

according to the condition~A10!. This is in agreement with
Duan et al.’s separation criterion@17#. The pure two-mode
squeezed vacuum forT50 is never separable unlesssqc50.
For the zero-temperature environment, i.e.,n̄50, the two-
mode squeezed state stays quantum mechanically enta
at any time. For the reasons given in Sec. IV, we refer tont
as the noise factor.

If nt,1, the quantum channel state is entangled and
teleportation is performed at the quantum level. Whennt
>1, the quantum channel is no longer quantum mech
cally entangled. However, the intermode correlation is s
there asLÞ0 in Eq.~9!. The following questions then arise
Does this classical correlation influence the teleportati
Can any nonclassical properties imposed in an original s
be teleported by the classically correlated channel? Bra
stein and Kimble found that when a pure two-mode squee
state is separable, i.e.,ssq50, observation of any nonclass
cal features in the teleported state is precluded. Howe
when a pure state is separable, there is no classical cor
tion either.

IV. TRANSFER OF NONCLASSICAL FEATURES

An imperfect replica state is reproduced at the receiv
station when the quantum channel is not maximally
tangled. It is well known that any linear noise-addition pr
cess, for example linear dissipation and amplification, can
described by the convolution relation of the quasiprobabi
functions@23#. With use of the Wigner functions for an a
bitrary original state~11! and for an impure quantum chann
~9!, we find that Eq.~6! leads to the following convolution
relation:
03230
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Wr~a!5E d2bPt~a2b!Wo~b!, ~14!

where the functionPt characterizes the teleportation proce

Pt~a2b!5
1

pnt
expS 2

1

nt
ua2bu2D , ~15!

and the noise factornt , defined in Eq.~13!, is completely
determined by the characteristics of the quantum chan
The noise factor increases monotonously as the interac
time T increases. The larger the initial squeezing, the l
vulnerable the quantum channel is. The noise factornt is
identical to the covariance introduced in@5# except for a
factor of 4. Ralphet al. found that the covariance measur
the noise added to the transmitted field@24#.

The noise factornt is related to the fidelity. With use o
Eqs.~10! and ~14!, the fidelity can be written as

F5pE d2a d2b Wo~a!Pt~a2b!Wo~b!. ~16!

In the limit of nt→0, the functionPt(a2b) in Eq. ~15!
becomes ad function and the fidelity becomes unity. Th
teleportation loses the original information completely w
F50 in the limit of nt→`.

The properties of the nonclassical states have been ca
lated and illustrated by quasiprobability functions. The no
classical features are associated especially with negative
ues and singularity of the quasiprobabilityP function
@16,25,26#. Suppose an original state whoseP function is not
positive everywhere in phase space. When this state is
ported, its nonclassical features are certainly transferre
the teleported state if the teleportation is perfect. If the te
portation is poor, the teleported state may have itsP function
positive definite and lose the nonclassical features.

By the Fourier transform of Eq.~14!, the convolution re-
lation is represented in terms of the characteristic functi
as

Cr
W~j!5exp~2ntuju2!Co

W~j!. ~17!

Using the relation~2! between characteristic functions, E
~17! is written as

Cr
P~j!5exp@2~nt21!uju2#Co

Q~j!, ~18!

whereCo
Q(j) is the characteristic function forRs521(a) of

the original state. TheP function is not semipositive definite
if its characteristic functionCr

P(j) is not inverse-Fourier-
transformable. Even when it is inverse-Fourie
transformable, there is a chance for theP function to become
negative at some points of phase space. Lu¨tkenhaus and Bar-
nett found that only whens<21 is the quasiprobability
Rs(a) for any state semipositive definite. We are sure th
for any original state, the left-hand side of Eq.~18! is
inverse-Fourier-transformed to aP function semipositive
definite only whennt>1. This condition is the same as th
separability condition~13! for the quantum channel. We con
clude thatwhen a quantum channel is separable, i.e., n
5-4
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TRANSFER OF NONCLASSICAL FEATURES IN . . . PHYSICAL REVIEW A62 032305
quantum mechanically entangled, no nonclassical featu
implicit in an original state are transferred by teleportation.
In other words, nonclassical features are not teleported v
classically correlated channel.

There are two well-known nonclassical properties tha
continuous-variable state may have: sub-Poissonian ph
statistics and quadrature squeezing. The two nonclas
properties have been studied for noiseless communica
We analyze the transfer of these properties by teleporta
in the following subsections.

A. Sub-Poissonian statistics and Fock state

A state is defined to be sub-Poissonian when its pho
number variance (DN)2 is smaller than its mean photo
numberN̄. The expectation value of an observable for a st
can be obtained by use of the characteristic functionCP(j)
for its P function @15#,

^~ â†!mân&5
]m

]jm

]n

]~2j* !n
CP~j!U

j5j* 50

. ~19!

Substituting Eq.~18! into Eq. ~19!, we find that the tele-
ported state is sub-Poissonian when the noise factor

nt,AN̄o
21N̄o2~DNo!22N̄o , ~20!

where N̄o and (DNo)2 are the mean photon number an
photon-number variance for the original state. If the origin
state is Poissonian or super-Poissonian, the right-hand sid
the inequality is either negative or imaginary so the te
ported state is never sub-Poissonian.

Assuming the largest sub-Poissonicity, (DNo)250, for
the original state, it is found that when the noise factornt

,AN̄o
21N̄o2N̄<1/2, some sub-Poissonian property

found in the teleported state. Thus, if the noise factor of
quantum channel is larger than or equal to 1/2, the transfe
any sub-Poissonian property is precluded.

A Fock stateum& has a definite energy and its photo
number variance is zero. When this extreme sub-Poisso
field is teleported, the mean photon number and mean v
ance areN̄r5m1nt and DNr

25(2m11)nt1nt
2 at the re-

ceiving station. The Fock stateum& is written in the Wigner
representation as

Wo~a,m!5
2

p
~21!m exp~22uau2!Lm~4uau2!, ~21!

whereLm is a Laguerre polynomial. From the convolutio
relation ~14!, the teleported state is obtained as

Wr~a!5
2

p

~2nt21!m

~2nt11!m11
expS 2

2uau2

2nt11D
3LmS 2

4uau2

~2nt!
221

D . ~22!

The fidelity for the Fock state is given by Eq.~16!,
03230
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Fm5
~12nt!

m

~11nt!
m11

PmS 11nt
2

12nt
2D , ~23!

wherePm is a Legendre polynomial. Whennt50,Fm51. In
the limit of nt51, where the teleportation is classical, th
fidelity Fm5(1/4)m for mÞ0. The vacuum state has the fi
delity F051/2 in the limit.

B. Quadrature squeezing and squeezed state

We examine the transfer of quadrature squeezing wh
an unknown original state may have. The quadrature-ph
operator is defined as

X̂~f!5e2 ifâ1eifâ†, ~24!

where â(â†) is an annihilation~creation! operator andf is
related to the angle in phase space. A state is said to
squeezed if the quadrature-phase variance@DX(f)#2,1 for
an anglef. Substituting Eq.~18! into Eq. ~19!, the mean
quadrature phaseX̄(f) and variance@DX(f)#2 can be cal-
culated,

X̄r~f!5X̄o~f!, @DXr~f!#25@DXo~f!#212nt , ~25!

whereX̄o(f) and@DXo(f)#2 are the mean quadrature pha
and variance for the original state. It is interesting to real
that the mean quadrature phase does not change at all d
ing teleportation. This property holds regardless of the cha
nel entanglement.

The teleported state exhibits quadrature squeezing if

nt,
1

2
$12@DXo~f!#2%<

1

2
. ~26!

Suppose that the original state has the absolute minim
variance@DXo(f8)#250 atf5f8. Then its teleported state
is also squeezed if the quantum channel is entangled eno
to be represented by the noise factornt,1/2. We note that
the conditionnt,1/2 applies to the survival of both quadra
ture squeezing and sub-Poissonian statistics.

A squeezed vacuum with the degree of squeezingso is
written in the Wigner representation as

Wo~a!5
2

p
exp@22 exp~2so!a r

222 exp~22so!a i
2#,

~27!

wherea r anda i are real and imaginary parts ofa. Its tele-
ported state is represented by the Wigner function

Wr~a!5
2

pAA~so!A~2so!
expF2

2

A~so!
a r

22
2

A~2so!
a i

2G ,
~28!

where the parameterA(so)52nt1exp(22so). The fidelity is
given by

F~so!5~nt
212nt cosh 2so11!21/2. ~29!
5-5
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When the teleportation is classical withnt51,F(so)5(2
12 cosh 2so)

21/2.

V. REMARKS

Quantum teleportation can be made more reliable by
phisticated schemes such as purification of the impure
partially entangled quantum channel@12,10#, detection with
perfect efficiency, and well-defined unitary operation. Ho
ever, in the real world, the influence of noise cannot easily
disregarded. We have been interested in the influence
noise on the transfer of nonclassicalities which may be
posed in an original unknown state. To make the probl
simple while honoring the real experimental situation,
assumed that the same amount of noise affects the
modes of the quantum channel. We found that when
quantum channel is separable, the transfer of any noncla
cality is impossible: Nonclassical features cannot be te
ported via a classically correlated channel. The separab
of a two-mode Gaussian state is considered using the p
bility of assigning a positive well-definedP function to the
state after some local unitary operations. We have analy
the transfer of well-known nonclassical features such as s
Poissonicity and quadrature squeezing. The teleportatio
the two nonclassical features is ruled out under the sa
noise level. The faithfulness of the teleportation has a
been discussed and the fidelities have been found for
initial Fock state and squeezed state. Because one o
important ingredients of teleportation is that the original st
is unknownat the sending station, our measure of noise f
tor nt , which depends only on the quality of the channel,
important. Of course, to represent the quality of the telep
tation by a fidelity we have to know the average fidelity f
the teleportation, which is under investigation.

One question still arises: Is the teleportation better th
the direct transmission to transfer a nonclassical field?
field may be deteriorated by the thermal environment dur
the direct transmission. Solving a similar Fokker-Plan
equation to Eq.~8! for a single-modefield, we find that, by
the direct transmission, the Wigner function at the receiv
station can be represented by the same equation as Eq.~14!
with the different noise factornd @23#:

nd5n̄T. ~30!

Assuming that the imperfect teleportation is caused only
the impure quantum channel embedded in the thermal e
ronment, we compare the two noise factorsnt in Eq. ~13!
andnd in Eq. ~30!. We have implicitly assumed in this pape
that the two-mode squeezed state~quantum channel! genera-
tor is located in the middle point between the sending a
receiving stations. The squeezed photons in the quan
channel, thus, travel only a half distance between the sen
and receiving stations. Bearing this in mind, we find that

nt~ for time t/2!2nd~ for time t !

5n̄@12A12T#2112A12T@12exp~22sqc!#. ~31!
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The right-hand side is semipositive so that the noise given
teleportation is more than that by direct transmission. If
consider that this result is obtained for the case when
other operations including detection and unitary transform
tion in the teleportation protocol are perfect, we conclu
that the nonclassical field is more robust in direct transm
sion than in teleportation. The reason is that the teleportatio
relies on quantum entanglement of the quantum channel.
quantum entanglement based on intermode coherenc
much more fragile than the single-mode coherence. Ho
ever, the quantum teleportation can be made more faithfu
purification of the quantum channel while the direct tran
mission does not have that possibility.
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APPENDIX: POSITIVITY OF THE P FUNCTION
AND SEPARABILITY FOR A GAUSSIAN STATE

A two-mode Gaussian stater̂ of modeb and c is sepa-
rable when it is represented by a statistical mixture of
direct-product states,

r̂5E d2bP~b!r̂b~b! ^ r̂c~b!, ~A1!

wherer̂b,c(b) are density matrices, respectively, for mod
b and c, and P(b) is a probability density function with
P(b)>0. The states ofr̂b(b) andr̂c(b) can be nonclassica
and do not have to have theirP functions positive well-
defined. However, because they are Gaussian, it is pos
to transform them to assign positive well-definedP functions
by local unitary transformations@27#. The separable condi
tion, Eq. ~A1!, can then be written as

r̂85E d2abE d2acE d2bP~b!P~ab ;b!P~ac ;b!

3uab&^abu ^ uac&^acu, ~A2!

wherePb(ab ;b) andPc(ac ;b) are theP functions, respec-
tively, for the fields of modesb andc after some local uni-
tary operations.r̂8 is for the two-mode Gaussian state aft
the local operations.

We want to prove in this appendix that if and only if whe
a two-mode Gaussian state is separable, a positive w
definedP function P(ab ,ac) is assigned to it after som
local unitary transformations.

Consider the sufficient condition. If a two-mode Gauss
stater̂ is separable, it can be written as Eq.~A2! after some
local operations. BothPb(ab ;b) andPc(ac ;b) are positive
well-defined andP(b) is a probability density function, so

E d2bP~b!P~ab ;b!P~ac ;b! ~A3!
5-6
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is a normalized positive function, which we can take as
positive well-definedP function P(ab ,ac). We have proved
that if a two-mode Gaussian state is separable, it has a p
tive well-definedP function after some local unitary opera
tions.

Now let us prove the necessary condition. If the loca
transformed two-mode Gaussian state is represented
positive well-definedP function P(ab ,ac), the separable
condition ~A2! becomes

P~ab ,ac!5E d2bP~b!Pb~ab ;b!Pc~ac ;b!. ~A4!

Further, by some additional squeezing and rotation it is
ways possible to have the rotationally symmetric varian
@Da i(f)#2 for any anglef. After these transformations, th
positive well-definedP function P(ab ,ac) can be written as

P~ab ,ac!5N expF2 (
i , j 5b,c

a iNi j a j*

1 (
i 5b,c

~a il i* 1a i* l i !G , ~A5!

whereN is the normalization constant,Ni j a Hermitian ma-
trix, andl i a complex number. The linear terms ofa i are not
considered because they do not affect the proof. In fact, t
can always be removed by some local displacement op
tions. Equation~A5! can be written as

P~ab ,ac!5
DetNi j

p2
expS 2 (

i , j 5b,c
a iNi j a j* D , ~A6!

where DetNi j is the determinant of the Hermitian matr
Ni j . To find an expression in the form of Eq.~A4!, let us
introduce an auxiliary field (b,b* ) enabling the function
P(ab ,ac) to be represented by a Gaussian integral,
d

A.

H.

J.

03230
e

si-

a

l-
e

ey
a-

P~ab ,ac!5
DetNi j

p3 E d2b exp@2ubu22Eb~ab ,b!

2Ec~ac ,b!#, ~A7!

where

Eb~ab ,b!5~Nbb1uNbcu2!uabu22abNbcb* 2ab* Nbc* b,
~A8!

Ec~ac ,b!5~Ncc11!uacu21acb* 1ac* b. ~A9!

The integrand in Eq.~A7! can now be decomposed into thre
Gaussian functions each of which satisfies the normaliza
condition because

Nii .0 and DetNi j .0 ~A10!

for positive well-definedP(ab ,ac) in Eq. ~A5!. Taking

Pb~ab ;b!5
Mb

p
expS 2Mbuabu21abNbcb*

1ab* Nbc* b2
uNbcu2

Mb
ubu2D , ~A11!

Pc~ac ;b!5
Mc

p
expS 2Mcuacu22acb* 2ac* b2

1

Mc
ubu2D ,

~A12!

P~b!5
Ms

p
exp~2Msubu2!, ~A13!

where Mb5Nbb1uNbcu2, Mc5Ncc11, and Ms
5DetNi j /(MbMc), theP function is finally obtained in the
form of Eq. ~A4!. It is clear thatP(b) is the positive prob-
ability density function and the two-mode Gaussian state
separable if it can be transformed to have a positive w
definedP function by some local unitary operations.
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